
Offline Meta-Reinforcement Learning

Arya Ebrahimi

September 2023

Abstract

In recent years, reinforcement learning has witnessed substantial progress in domains
such as robotics and Atari game-playing. Nevertheless, challenges related to data ineffi-
ciency and limited generalization capabilities have hindered further advancements in this
field. Meta-reinforcement learning methods offer a promising solution by enabling poli-
cies to adapt to new tasks with fewer data samples compared to standard RL techniques.
However, the meta-training phase itself demands a substantial amount of data and is
costly. The incorporation of offline data into this process holds the potential to mitigate
data inefficiency issues, yet it introduces its own set of complexities. In this review, we
introduce various categories of offline meta-reinforcement learning approaches and pro-
vide an overview of relevant research papers within each category, facilitating a deeper
understanding of this field.

1 Introduction
Meta-reinforcement learning refers to a group of machine learning techniques designed to ac-
quire the ability to learn reinforcement learning itself. These methods have the potential to
overcome the sample inefficiency of reinforcement learning methods during meta-test time.
However, since these methods are trained on a distribution of similar tasks during meta-
training, they require a greater amount of data, which implies that meta-training itself is
sample inefficient but meta-testing is sample efficient [1].

Since meta-training requires a larger amount of data, online learning is not practical, and it
could even be impossible in some cases since interaction with the environment may not be
possible. Utilizing offline data in this situation could be a practical choice because the data is
precollected and can alleviate the sample inefficiency problem.

However, offline reinforcement learning itself poses difficulties. The policy under which the
offline data is collected (πb) differs from the current learning policy (πθ), resulting in a dis-
crepancy between the distributions of these two policies (distributional shift) [2]. This can
be problematic when the agent selects an action that is not defined in πb. In online learning,
by interacting with the environment, the agent can rectify this difference; however, in offline
settings, this difference cannot be overcome. Nonetheless, offline meta-reinforcement learning
presents additional problems, the most important of which is that the distribution of trajecto-
ries seen by the agent during meta-testing and meta-training differs. However, within recent
years, many approaches have been introduced to address this problem, which I introduce some
of them in this literature review.

2 Preliminaries
In this section, we will introduce the mathematical formalism of reinforcement learning, along-
side a brief introduction to meta-reinforcement learning and offline reinforcement learning.

1

2.1 Reinforcement Learning
A reinforcement learning algorithm learns a policy to interact in a Markov Decision Process,
which is defined as a tuple M = (S,A, P, P0, r, γ, T), where S is the state space, A is the
action space, P (st+1|st, at) is the transition probability from st to st+1 after taking action at,
P0 is the initial state distribution, r : S × A → R is the reward function, γ ∈ (0, 1] is a scalar
discount factor, and T is the horizon.

The policy π(a|s) : M×A → R+ is a distribution over actions conditioned on states. The
interaction of the policy with the environment creates a distribution over trajectories, which
is defined as:

P (τ) = P0(s0)

T∏
t=0

π(at|st)P (st+1|st, at) (1)

Using the trajectory distribution, the reinforcement learning objective (maximization of the
expected discounted return), J(π), can be written as:

Jπ = Eτ∼P (τ)

T∑
t=0

γtrt (2)

2.2 Meta-Reinforcement Learning
Meta-reinforcement learning utilizes a set of training tasks for acquiring a policy, which is
capable of rapid adaptation to novel test tasks that were not encountered during the training
phase. During the meta-training process, the learning algorithm is exposed to M tasks, repre-
sented as {Ti}Mi=1, sampled from the task distribution p(T). Subsequently, at meta-test time,
a fresh task, denoted as Tj and drawn from p(T), is randomly selected. This task was not
previously encountered during meta-training, and the meta-trained policy must swiftly adapt
to this new task in order to maximize its performance with a limited number of samples.

A proficient meta-reinforcement learning approach can meta-train a model that efficiently rep-
resents a highly effective reinforcement learning process. This trained model can subsequently
tackle entirely novel tasks more quickly, significantly outperforming a traditional reinforcement
learning algorithm that starts from scratch [3].

3 Offline Meta-Reinforcement Learning
Combining meta-reinforcement learning and offline reinforcement learning methods results in
a new approach called offline meta-reinforcement learning, which can be categorized into two
different groups of methods.

3.1 Optimization-Based Approaches
These approaches are based on MAML [4] and attempt to combine offline reinforcement learn-
ing methods with it. However, due to the properties of gradients required by MAML, this
combination cannot be accomplished without additional modifications.

One of these approaches tries to combine Advantage Weighted Regression (AWR) [5], which
consists of two supervised learning steps, with MAML. It uses Monte Carlo returns to learn a
value function and a policy using the following loss functions:

LV (ϕ,Di) = Es,a∼Di

[
||RD

s,a − Vϕ(s)||2
]

(3)

2

Figure 1: General AWR process.

LAWR(θ, ϕ,Di) = Es,a∼Di

[
− log πθ(a|s) exp

(1
β (RDi

(s, a)− Vϕ(s))
)]

(4)

Where Di = {si,t, ai,t, s′i,t, ri,t} represents the collected trajectories from a policy, RDi(s, a)
represents the Monte Carlo return for choosing action a in state s, Vϕ(s) represents the learned
value function, beta is a temperature value, and RDi

(s, a)− Vϕ(s) represents the advantage.

In this approach, the value function is first updated using the Monte Carlo return, and subse-
quently, this learned value function is used in the policy update using LAWR.

Meta-Actor Critic with Advantage Weighting (MACAW) [6] combines AWR with MAML to
learn the values of θ and ϕ so that they can serve as initial parameters in meta-test, adapting
to a new task with just a few gradient updates. Nevertheless, this approach necessitates
additional modifications to function correctly. MAML requires universal loss functions [7],
meaning that the inner gradient should contain all necessary information for task inference,
but LAWR is not universal. To tackle this problem, the MACAW policy update conducts both
advantage-weighted regression onto actions and an additional regression onto advantages.

θ′i ← θ − α1∇θLπ(θ, ϕ
′,Dtr

i), where Lπ = LAWR + λLADV (5)

which LADV is defined as:

LADV (θ, ϕ
′,D) = Es,a∼D

[
||Aθ(s, a)− (RD(s, a)− Vϕ′

i
)||2

]
(6)

Finally, the meta-training phase can be formulated as shown in Algorithm 1.

Algorithm 1 MACAW meta-training
Input: Tasks {Ti}, offline buffers {Di}
Hyperparameters: learning rates α1, α2, η1, η2, training iterations n, temperature β
Randomly initialize meta-parameters θ and ϕ
for n steps do

for task Ti ∈ {Ti} do
Sample disjoint batches Dtr

i ,Dts
i ∼ Di

ϕ′ ← ϕ− η1∇ϕLV (ϕ,Dtr
i)

θ′ ← θ − α1∇θLπ(θ, ϕ
′,Dtr

i)
end for
ϕ← ϕ− η2

∑
i[∇ϕLV (ϕ

′
i,Dts

i)]
θ ← θ − α2

∑
i[∇θLAWR(θ

′
i, ϕ

′
i,Dts

i)]
end for

3

Figure 2: Image derived from [8]. out-of-distribution problem in context-based offline meta-
learning approaches.

3.2 Black-Box Approaches
Also known as context-based approaches, these methods often use an encoder network to sample
a context vector z from a distribution qϕe

(z|D). The policy πθ(a|s, z) is then conditioned on
both state s and context vector z by concatenating z to the state s [8]. However, these
approaches face challenges with out-of-distribution (OOD) tasks. During meta-training, the
offline data collected by an unknown policy is used for training, which means that the properties
of offline trajectories are learned as context. However, during the meta-test, the agent interacts
with the online environment and receives online trajectories, resulting in a distribution shift
between meta-test and meta-train. Nonetheless, several methods have been introduced to
mitigate this issue.

3.2.1 Using online trajectories in meta-training

Semi-supervised Meta Actor-Critic (SMAC) [8] uses offline data for meta-training alongside
learning a reward function from existing offline labeled rewards. Then, the offline meta-
reinforcement learning agent interacts with the environment to collect additional online data,
but without labeled rewards. Instead, it uses the learned reward function from offline data
to predict the online trajectory rewards to further meta-train using these data. The reward
function is a decoder parametrized with ϕd, designed for predicting the rewards, and its loss
function is defined as:

Lreward(ϕd, ϕe, τ, z) =
∑

(s,a,r)∈τ

||r − rϕd
(s, a, z)||22 +DKL

(
qϕe(·|τ)

∣∣∣∣∣∣ pz(·)) (7)

3.2.2 Latent Dynamics Mixture

Latent Dynamics Mixture (LDM) [9] combines offline trajectories to generate new trajectories,
and comprises two separate networks. Similar to the previous approach, it includes an encoder
qϕp that takes trajectories as input and produces a context on which the policy network is
conditioned. The second network is the Latent Dynamics Network, which is composed of an
encoder qϕv

and two decoders pθR and pθT . The encoder functions similarly to the encoder
in the policy network, outputting the latent distribution mt ∼ qϕv

(m|τt) , while the decoders
are conditioned on this latent information. During training, n workers generate various latents
mi

t ∼ qϕv (m|τ it) from different tasks. The weighted sum of these latents creates a new latent
representation m̂t . The reward decoder pθR then utilizes this new latent representation to
predict the corresponding reward r̂t. Finally, the policy leverages these new m̂t and r̂t values,
which represent imaginary tasks, for further meta-training.

4

Figure 3: Image derived from [9]. General procedure of Latent Dynamics Mixture.

Figure 4: Image derived from [10]. CORRO general approach.

3.2.3 Better representations using Contrastive Learning

The goal of context-based approaches is to learn a representation for tasks. We observed that
learning context is challenging in an offline setting, where the offline data is collected using
an unknown policy. However, to improve the learning of task representations, some methods
employ contrastive learning to enhance performance in out-of-distribution tasks.

One of these methods is CORRO [10], which initially employs an encoder named the Tran-
sition Encoder, differing from previously encountered encoders. Instead of taking the en-
tire trajectory as input, it processes one transition at a time and produces its context zi =
Eϕ1

(si,t, ai,t, s
′
i,t, ri,t). Upon generating the context for all the transitions within a trajec-

tory, another encoder known as the Aggregator combines them into a single context z =
Eϕ2({zi}τi=1). The transition encoder employs a contrastive loss to maximize mutual informa-
tion for improved task representation, which its objective is defined as:

max
ϕ1

∑
Mi∈M−x,x′∈Xi

[
log

(
exp(S(z, z′))∑

M∗∈M exp(S(z, z∗))

)]
(8)

WhereM is the set of training tasks, x and x′ (positive pairs) represent two transitions sampled
from the same task distribution, and z and z′ are the outputs of the transition encoder for
these transitions. Moreover, x∗ is sampled from a different set of data, indicating that x and
x∗ are negative pairs.

Another method that utilizes contrastive learning is DOMINO [11], which, instead of learning
a single context, learns multiple decoupled contexts.

5

References
[1] J. Beck et al., “A survey of meta-reinforcement learning,” arXiv preprint arXiv:2301.08028,

2023.

[2] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learning: Tutorial,
review, and perspectives on open problems,” arXiv preprint arXiv:2005.01643, 2020.

[3] T. Yu et al., “Meta-world: A benchmark and evaluation for multi-task and meta rein-
forcement learning,” in Conference on robot learning, PMLR, 2020, pp. 1094–1100.

[4] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of
deep networks,” in International conference on machine learning, PMLR, 2017, pp. 1126–
1135.

[5] X. B. Peng, A. Kumar, G. Zhang, and S. Levine, “Advantage-weighted regression: Simple
and scalable off-policy reinforcement learning,” arXiv preprint arXiv:1910.00177, 2019.

[6] E. Mitchell, R. Rafailov, X. B. Peng, S. Levine, and C. Finn, “Offline meta-reinforcement
learning with advantage weighting,” in International Conference on Machine Learning,
PMLR, 2021, pp. 7780–7791.

[7] C. Finn, “Learning to learn with gradients,” Ph.D. dissertation, EECS Department,
University of California, Berkeley, Aug. 2018.

[8] V. H. Pong, A. V. Nair, L. M. Smith, C. Huang, and S. Levine, “Offline meta-reinforcement
learning with online self-supervision,” in International Conference on Machine Learning,
PMLR, 2022, pp. 17 811–17 829.

[9] S. Lee and S.-Y. Chung, “Improving generalization in meta-rl with imaginary tasks from
latent dynamics mixture,” Advances in Neural Information Processing Systems, vol. 34,
pp. 27 222–27 235, 2021.

[10] H. Yuan and Z. Lu, “Robust task representations for offline meta-reinforcement learning
via contrastive learning,” in International Conference on Machine Learning, PMLR, 2022,
pp. 25 747–25 759.

[11] Y. Mu et al., “Decomposed mutual information optimization for generalized context in
meta-reinforcement learning,” arXiv preprint arXiv:2210.04209, 2022.

6

	Introduction
	Preliminaries
	Reinforcement Learning
	Meta-Reinforcement Learning

	Offline Meta-Reinforcement Learning
	Optimization-Based Approaches
	Black-Box Approaches
	Using online trajectories in meta-training
	Latent Dynamics Mixture
	Better representations using Contrastive Learning

