
Robotics Final Project, Parallax Eddie Robot Platform
with ROS2

Arya Ebrahimi Sara Ghavvampour

June 2023

Abstract

In this article, we provide a comprehensive report on how to get started with the Parallax
Eddie robot platform with ROS2, and we discuss the problems we encountered during our
study.

1 Setting up the Kinect
In this section, we will begin by explaining how to utilize the Kinect sensor in ROS2. To
start, you need to install the kinect_ros2 package, which offers RGB-D topics for ROS2. This
package requires the installation of libfreenect, which is a userspace driver specifically designed
for the Microsoft Kinect sensor.

1.1 problems
If you carefully adhere to the instructions provided in the kinect_ros2 readme and ensure that
all dependencies of libfreenect are satisfied, you should not encounter any issues. You can build
libfreenect by following the given set of instructions.

$ git clone https://github.com/OpenKinect/libfreenect
$ cd libfreenect
$ mkdir build && cd build
$ cmake .. -DBUILD_OPENNI2_DRIVER=ON\

-DBUILD_EXAMPLES=ON\
-DBUILD_PYTHON3=OFF\

$ make
$ sudo make install

Once you have installed libfreenect successfully, the building process of kinect_ros2 should
be smooth and error-free. It will publish several topics, including image_raw, camera_info,
depth/image_raw, and depth/camera_info. The outputs of the image_raw and depth/im-
age_raw topics can be observed in Figure 1 using rviz2.

$ ros2 run kinect_ros2 kinect_ros2_node

2 Add timestamp to RGB images
After analyzing the topics in the kinect_ros2 package, it was observed that the RGB topics were
missing timestamps. Timestamps are essential for synchronizing data from various sensors and
components in a robotic system. They ensure accurate correlation and fusion of data captured
or processed by different modules.
To address this issue, the timer callback in the kinect_ros2_component.cpp file has been
modified to include timestamps for RGB images. This modification ensures that each RGB

1

https://github.com/fadlio/kinect_ros2
https://github.com/OpenKinect/libfreenect

Figure 1: The result of the image_raw and depth/image_raw topics shown in rviz2.

image is assigned a timestamp, enabling proper synchronization and temporal integration of
the data within the robotic system.

Listing 1: Add timestamp kinect_ros2
void KinectRosComponent : : timer_callback ()
{

freenect_process_events (fn_ctx_) ;
auto header = std_msgs : : msg : : Header () ;

auto stamp = now () ;
header . stamp = stamp ;
depth_info_ . header . stamp = stamp ;
rgb_info_ . header . stamp = stamp ;

i f (_depth_flag) {
header . frame_id = ”kinect_depth” ;
auto msg = cv_bridge : : CvImage(header , ”16UC1” , _depth_image) . toImageMsg () ;
depth_pub_ . publish (∗msg , depth_info_) ;

_depth_flag = f a l s e ;
}

i f (_rgb_flag) {
header . frame_id = ”kinect_rgb” ;
auto msg = cv_bridge : : CvImage(header , ”rgb8” , _rgb_image) . toImageMsg () ;
rgb_pub_ . publish (∗msg , rgb_info_) ;

_rgb_flag = f a l s e ;
}

}

The results of implementing this modification can be observed in Figure 2.

3 Bringup the Robot
To proceed further, the subsequent action involves initiating the robot. Initially, retrieve the
most recent iteration of the eddiebot-ros repository and ensure that all the required elements
are installed by executing the provided commands below.

$ rosdep update
$ rosdep install -i from-path src --rosdistro humble -y

Then connect the USB port of the robot and grant permission to it.
$ sudo chmod a+rw /dev/ttyUSB0

2

Figure 2: image_raw topic before and after of setting the timestamps.

3.1 eddiebot-bringup package
This package facilitates the conversion of higher-level instructions, provided via ROS2 topics,
into lower-level instructions specifically designed for the eddiebot. The file eddie_controller.cpp
subscribes to the eddie/simple_velocity topic, which contains both the linear and angular
velocity information for the robot. Given that the eddiebot operates as a differential-drive
system, it necessitates separate linear and angular velocities for each of its wheels. Therefore,
the approach outlined in section 6 is implemented to generate distinct velocities for each wheel.
Subsequently, using ROS2 services, these higher-level instructions are transmitted to their
corresponding services defined in ”eddie.cpp,” enabling the creation of low-level instructions.
These instructions are then sent to the eddiebot via a serialized connection.
This package can be executed using the launch file as follows:

$ ros2 launch eddiebot_bringup eddie.launch.yaml

3.2 eddiebot-nav package
This package incorporates essential transformations, remappings, and modifications within its
launch files to enable various localization and mapping functionalities. The primary launch file,
”eddiebot.launch.py,” must be executed subsequent to the completion of the eddiebot-bringup
process.

$ ros2 launch eddiebot_nav eddiebot.launch.py

3.3 teleop-twist-keyboard
The subsequent step involves installing teleop-twist-keyboard, which provides a means to gen-
erate twist messages using the keyboard and publish them on a specific topic. Then, the
eddiebot_vel_controller package converts these twist messages into SimpleVelocity messages,

3

https://github.com/ros2/teleop_twist_keyboard

Figure 3: The desired output of the eddiebot-bringup.

a prerequisite for the eddiebot-bringup package.
A potential issue may arise due to the absence of the catkin_pkg package, which can be
resolved by installing it using the provided command below:

$ sudo pip install -U catkin_pkg

Once the teleop_twist_keyboard package has been built successfully, you can execute it using
the following code snippet:

$ ros2 run teleop_twist_keyboard teleop_twist_keyboard −−ros−args −r /cmd_vel:=/eddie/cmd_vel

After completing the preceding steps, the eddiebot is prepared for movement, and navigation
topics are being published to facilitate its operation. To verify the functionality of these
topics, you can launch the ”view_model” launch file from the eddiebot-rviz package. By
moving the robot, the model representation should correspondingly move as well (ensure that
the ”fixed_frame” is set to ”odom”).
The pointcloud_to_laserscan package is employed to generate synthetic LaserScans. The point
clouds are published on the ”/points” topic, which can be visualized by adding the topic to
RViz2 and configuring its Quality of Service (QoS) to ”BestEffort”. The simulated LaserScans,
on the other hand, are published on the ”/scan” topic. By analyzing the /scan topic, we can
find the range and FOV which is described in the videos.

4 Networking
Once you have connected both machines to the same network, such as a mobile hotspot, it is
important to disable any VPN or proxies that might interfere with the connection. To ensure
network availability, make sure that the ROS_LOCALHOST_ONLY parameter is set to zero
and both machines have the same ROS_DOMAIN_ID.

$ export ROS_LOCALHOST_ONLY=0
$ export ROS_DOMAIN_ID=0

After completing these steps, you should verify if both machines have the same IP range by
running the following command:

$ hostname -I

If all the necessary steps have been followed and the IP ranges are correct, you can proceed to
run a simple talker and listener using the demo_nodes_cpp package. The talker will publish
a simple ”Hello, world!” message, and the listener should receive and display it.
Once you have confirmed that the talker and listener are functioning properly, you can proceed
to bring up the robot and launch the main navigation launch file on the main laptop. Ensure

4

Figure 4: /points and /scan topics shown in RViz2.

that all the necessary components and dependencies are properly set up for the robot.
On the teleop laptop, you can check the topics being published by the main laptop. Use
the appropriate commands or tools to view the topics and their data. This will allow you to
monitor the robot’s navigation and observe the relevant topics from the teleop laptop.

5 2D SLAM
In the current setup, the SLAM_Toolbox is utilized for mapping using the simulated Laser-
Scans, while Nav2 is employed for navigation based on the created map. It is crucial to adjust
the parameters of each package, as defined in the configs folder of the eddiebot-nav package,
to ensure optimal performance.
For the SLAM_Toolbox, one key component to consider is the range of the kinect sensor. Real
LaserScans typically cover a larger and wider area, whereas the fake LaserScans are generated
from a kinect depth sensor with a limited range. A suitable range for the kinect in this case
could be 5 meters.
Regarding Nav2, an important parameter to tune is the frequency at which it publishes velocity
commands to the robot. The default value specified in the velocity_smoother is 20 Hz, which
can be quite high. If the robot is not moving despite receiving instructions, it could be due to
the excessively high publish rate. By reducing this value to 0.2 (indicating that the velocity is
published every 5 seconds), Nav2 can effectively control the robot’s movement.
Additional key values to consider in Nav2 are the minimum and maximum velocities and ac-
celerations, which should be adjusted based on the specific requirements of the robot and its
environment.
One potential issue to address is the discrepancy in topic names between the eddiebot-vel-
controller package and Nav2. Currently, the package publishes on ”/eddie/cmd_vel,” while

5

Nav2 publishes on ”/cmd_vel” without any remapping. To resolve this, either the eddiebot-
vel-controller package should publish on ”/cmd_vel” or Nav2 needs to be remapped to publish
on ”/eddie/cmd_vel.” This adjustment will ensure proper communication between the pack-
ages.
The commands of this part are as follows: (each on a separate terminal)
SLAM:

$ ros2 launch eddiebot_bringup eddie.launch.yaml
$ ros2 launch eddiebot_nav eddiebot.launch.py
$ ros2 launch eddiebot_rviz view_robot.launch.py
$ ros2 launch eddiebot_nav slam.launch.py

Nav2:

$ ros2 launch eddiebot_bringup eddie.launch.yaml
$ ros2 launch eddiebot_nav eddiebot.launch.py
$ ros2 launch eddiebot_rviz view_robot.launch.py
$ ros2 launch eddiebot_nav localization.launch.py world:="map.yaml"
$ ros2 launch eddiebot_nav nav2.launch.py

6 Analyze Kinematics
6.1 Encoder reading model
To determine the speed and direction of travel, a pair of wheel encoders are used. They
calculate the number of pulses detected from each wheel. Each wheel encoder consists of two
sensors and can measure a distance resolution equal to 1/36th of the circumference of the
robot’s wheel. According to the sensor, it generates 36 pulses for every full rotation of the
wheel. Using this information, the distance covered within a single pulse duration is provided
below.

d =
2πr

36
(1)

Then the distance traveled by each wheel can be written as follows:

dR = (s(R,t) − s(R,t−1)) · d (2)

dL = (s(L,t) − s(L,t−1)) · d (3)

where si,t is the encoder tick for wheel i at time t.

6.2 Odometry model
By using the teleop_keyboard package, Twist messages are published. These messages are
subsequently converted into Simple_Velocity messages by the eddiebot_vel_controller pack-
age, containing both the angular and linear velocities of the robot. Considering the usage of
a differential drive robot, it becomes necessary to calculate the individual velocities for each
wheel. This calculation is performed by the eddie_controller within the eddiebot_bringup
package. The mathematical intuition underlying this process is as follows:

ωR =
V + ω · b/2

r
(4)

ωL =
V − ω · b/2

r
(5)

where V and ω are the linear velocity and angular velocity of the robot, and b is the wheel
separation.
Since ω = V

r , linear velocities can be derived as follows:

6

Figure 5: Differential Drive Kinematics.

VR = ω · (R+ b/2) (6)

VL = ω · (R− b/2) (7)

where R = V
ω .

To convert velocity from meters per second to position per second, the velocities are divided
by d.
The odometry model is used to describe the robot’s position and orientation as a function
of the movement of its wheels using the information obtained by wheel encoders described in
section 6.1. The movement direction is then calculated by the difference in velocities of its two
wheels.

• If the linear velocities of the left wheel VL and the right wheel VR are the same, the robot
travels in a straight line.

• When VL and VR have different values, the robot moves in the direction of the wheel
with the lower linear velocity.

• When VL and VR have equal magnitudes but opposite directions, the robot rotates while
staying stationary. If the left wheel is moving forward, the robot spins in a clockwise
direction, and if the right wheel is moving forward, the robot spins counterclockwise.

Under the assumption that the wheels maintain contact with the ground at all times, without
any slipping, they follow curved paths on the plane. These paths are designed in a manner
that ensures the vehicle consistently rotates around a specific point known as the instantaneous
center of rotation (ICR).

d = R∆φ (8)

dr = (R+ b/2)∆φ (9)

dl = (R− b/2)∆φ (10)

∆φ =
dr − dl

b
(11)

7

d =
dr + dl

2
(12)

where dl and dr are the distances traveled by the left and right wheels. In general, dr and dl
are calculated using the information gathered by wheel encoders, and formulas described in
(2) and (3). Thus, the change in the orientation of the robot is calculated by the low-level
information of the wheel encoders.

To calculate the current position, the next step involves finding the derivatives of the position.
This can be achieved by determining the changes in the x and y directions using the following
formulas:

∆x = d cos(φ) (13)

∆y = d sin(φ) (14)

Where d is specified in equation(12). Thus, the new position can be calculated using the
following update rule:

p̂ =

xy
φ

+

∆x
∆y
∆φ

 (15)

In the case of a differential drive system, the robot’s angular and linear velocities are provided,
which are used to drive individual velocities for each wheel. The motion equations used to
calculate these velocities are analogous to the equations mentioned earlier. Therefore, the
motion equations can be written as follows:

φ̇ =
r

b
(vr − vl) (16)

v =
(vr + vl)

2
(17)

ẋ = v cos(φ) (18)
ẏ = v sin(φ) (19)

7 Visual SLAM
In this phase, we will be utilizing RTAB-Map, which is an RGB-D, Stereo, and Lidar Graph-
Based SLAM approach. It incorporates an incremental appearance-based loop closure detector
that utilizes a bag-of-words approach to determine the likelihood of a new image belonging
to a previous location or a new location. When a loop closure hypothesis is accepted, a new
constraint is added to the map’s graph, and a graph optimizer minimizes the errors within the
map.

Similar to Section 5, in this part, we will begin by using the RTAB-Map SLAM method to
create a map. The map generated by RTAB-Map will be saved in the .ros folder located at
/home/user. To create a map using RTAB-Map, follow the commands provided below: (note
that the default value of robot_description in eddiebot_rviz launch files are set to true)

$ ros2 launch eddiebot_bringup eddie.launch.yaml
$ ros2 launch eddiebot_nav eddiebot.launch.py
$ ros2 launch eddiebot_rviz view_robot.launch.py
$ ros2 launch eddiebot_nav rtabmap.launch.py

If the use_rtabmap_viz parameter is set to true in the RTAB-Map launch configuration, a sep-
arate window will appear displaying the visualization of the Kinect data and its corresponding

8

Figure 6: set use_rtabmap_viz true.

feature points. This visualization is similar to the one shown in Figure 6 of the documentation.
The window provides a visual representation of the captured data, allowing you to observe the
features and details extracted from the Kinect sensor during the mapping process.
After creating the map using RTAB-Map, you can load it and proceed with navigation tasks
similar to those described in Section 5. To accomplish this, run following commands in sepa-
rate terminals:

$ ros2 launch eddiebot_bringup eddie.launch.yaml
$ ros2 launch eddiebot_nav eddiebot.launch.py
$ ros2 launch eddiebot_rviz view_robot.launch.py
$ ros2 launch eddiebot_nav rtabmap.launch.py localization:='true'
$ ros2 launch eddiebot_nav nav2.launch.py

8 Extra
A package is created to read IMU data using websockets from an Android device and publish
it on the IMU topic. IMU messages consist of three main components: angular velocity, linear
acceleration, and orientation. It’s important to note that the orientation of the Android sensor
is given in Euler values, which need to be converted to Quaternion for the IMU message in
ROS2. Once these conversions are done, the EKF config should be set up to subscribe to the
IMU topic, and an EKF node can be used to fuse the IMU data with odometry by utilizing
the published transforms.

9

	Setting up the Kinect
	problems

	Add timestamp to RGB images
	Bringup the Robot
	eddiebot-bringup package
	eddiebot-nav package
	teleop-twist-keyboard

	Networking
	2D SLAM
	Analyze Kinematics
	Encoder reading model
	Odometry model

	Visual SLAM
	Extra

