A Review on Dreamers

Arya Ebrahimi & Sara Ghavvampour

September 2023

Abstract

In recent years, reinforcement learning has witnessed substantial progress in domains
such as robotics and Atari game-playing. However, RL algorithms face challenges in
terms of sample efficiency and exploration in complex and high-dimensional environments.
Model-Based Reinforcement Learning represents a promising approach to address these
challenges and enhance the efficiency and performance of RL algorithms.

1 Introduction

Usually, deep reinforcement learning algorithms demand a substantial number of training sam-
ples, leading to a considerably higher degree of sample complexity. In the context of RL tasks,
sample inefficiency for a given algorithm quantifies the volume of samples needed to learn an
approximately optimal policy. In contrast to supervised learning, which relies on historical
labeled data for training, conventional RL algorithms rely on interaction data generated by
executing the most up-to-date policy within the environment. Consequently, recent research in
the realm of deep reinforcement learning has placed significant emphasis on enhancing sample
efficiency [1].

In recent years, a series of papers known as Dreamers has been introduced, which are model-
based RL agents that learn long-horizon behaviors from images solely through latent imagina-
tion. We begin by introducing the core concepts of DreamerV1, and we delve into DreamerV2
and DreamerV3, as well as other works based on Dreamer from other research groups, such as
DreamerPro.

2 DreamerV1

The learning algorithm of DreamerV1 [2] is divided into two main parts: in the first one, the
agent learns the latent dynamic model from the dataset of past experience to understand the
environment’s dynamics, and in the second part, it learns the actor and critic models solely by
envisioning the trajectories. In the end, the agent employs the learned action model to interact
with the environment to gather more data for the first part.

2.1 Dynamics Learning

Dreamer learns a latent dynamics model comprising a representation model, a transition model,
an observation model, and a reward model. Firstly, the representation model encodes the
observation to generate state s;. Moreover, the transition model, which predicts ahead in the
latent space, predicts future states solely by imagining the future, without interacting with
the environment. The reward model predicts rewards based on the states, and the observation
model attempts to reconstruct the input observation to enhance representation learning.



Transition Model

Representation Model

Figure 1: Dynamic learning in DreamerV1.

Representation Model:  pg(s¢|si—1,at—1,0¢)

Observation Model: CIED

Reward Model: qo(rt|st)
qo(

Transition Model: St|St—1,a¢-1)

Initially, the dataset D is randomly initialized with random episodes. DreamerV1 learns latent
dynamics by reconstructing input observations, which is beneficial when the dataset is finite
or rewards are sparse. At each dynamics learning step, a batch of data is sampled from the
dataset D, and the latent states are computed. Finally, to optimize the model’s parameters,
the following loss function is utilized:

Lree =L+ L%+ LY

Lo =Ing(ost)

L% = Inq(r¢|ss)

Ly = *5KL(P(5t\St—1,at—170t)’|Q(St|5t—1,at—1))

2.2 Behavior Learning

After the dynamic learning phase, the subsequent step involves learning the actor and critic
using the acquired world model. The aim is to employ the model to "dream” the outcomes of
actions without additional interactions with the environment. The process of simulation com-
mences with a real observation, from which the latent state is derived using the representation
model. This simulation continues for a finite horizon, and at each step, the agent selects an
action based on the actor and computes the next latent state using the world model.

The process of behavior learning is depicted in Figure 2. As can be observed, the transition



Actor

ho

Transition Model

Figure 2: Behavior learning in DreamerV1.

v
. a,

P VLR Rl Y

|
(a) Learn dynamics from experience (b) Learn behavior in imagination (c) Act in the environment

Figure 3: Complete process of DreamerV1, image from [2].

model is used in place of the representation model because the observations are not accessible
during this phase.

DreamerV1 employs an actor-critic approach to learn behaviors. For that, it learns an action
model and a value model within the latent space of the world model. The action model
implements the policy and aims to predict actions that address the imagined environment,
while the value model estimates the imagined return achieved from each state. The action
and value models are trained cooperatively, following the typical policy iteration approach.
The action model aims to maximize an estimate of the value, while the value model regresses
towards the estimated value.

DreamerV1 utilizes A-return as its update target to balance bias and variance. As mentioned
in [3], a valid update can be made not only towards any n-step return but also towards any
average of m-step returns. A-return is an exponentially weighted average of n-step returns,
defined in DreamerV1 as follows:

h—
VR (37) =Egp.q, ( YT 4 Vh_va(sh)), where h =min(7 + k,t+ H),

—

=S

(2)

T s

Valsr) = (L= A) 32 AR (s,) + ATV (s,)

n=1



Algorithm 1 DreamerV1

Initialize dataset D with S random seed episodes

Initialize network parameters 6, ¢, 1.

while not converged do

for update step ¢ = 1..C do

Draw B transitions {(a¢, o, 7;)}FF ~ D. > Dynamics Learning
Compute model states s; ~ pg(S¢|St—1,a, 1,00)-
Update 6 using Equation 1.

Imagine trajectories {s,,a, }:t from each s;. > Behavior Learning
Predict rewards E(gq(r-|s-)) and values vy (s;).
Compute value estimates V) (s,) using Equation 2.
Update ¢ < ¢ +aV, Ziilt{ Va(s,).
Update ¢ — aVy 325" 5lug (s = Va(s))I
end for
01 < env.reset() > Environment Interaction
for time step t = 1..T do
Compute s¢ ~ pg(s¢|si—1,ai—1,0¢) from history.
Compute a; ~ g4(as|s;) with the action model.
Add exploration noise to action.
rt,0p41 < env.step(a).
end for
Add trajectory to dataset D < DU {(os,az, )} ;.
end while

Gaussian Latent Dynamics Categorical Latent Dynamics

Model Ideal i' '_\. - Model Ideal -
Prediction Frediction Predicticn Prediction

Possible Next Possible Mext
Images Images

Figure 4: Image from official DreamerV2 blog, Gaussian and Categorical latent dynamics.

3 DreamerV2

DreamerV2 [4] builds upon the same model utilized in DreamerV1. During the training pro-
cess, an encoder transforms each image into a representation that becomes integrated into
the recurrent state of the world model. These representations lack access to perfect informa-
tion about the images and instead focus on extracting only the essential elements needed for
making predictions, thereby enhancing the agent’s resilience to unseen images. Subsequently, a
decoder attempts to reconstruct the corresponding image, facilitating the acquisition of general
representations. However, DreamerV2 applies new techniques to enhance the model’s learning,
which we will introduce in this section.

3.1 Categorical Variables

The first technique involves representing each image using categorical variables, as opposed
to the Gaussian variables employed in DreamerV1. In this approach, the encoder transforms
each image into 32 distributions, each consisting of 32 classes, the meanings of which are au-
tomatically determined as the world model learns. The one-hot vectors, drawn from these


https://blog.research.google/2021/02/mastering-atari-with-discrete-world.html

e
o
g\
Jo
9\
-»@/

Figure 5: Image from [4], World model learning in DreamerV2.

distributions, are then concatenated to create a sparse representation that is subsequently
passed on to the recurrent state [4]. In contrast, earlier world models employing Gaussian pre-
dictors struggle to accurately capture the distribution over multiple Gaussian representations
for the possible next images.

3.2 KL Balancing

DreamerV2 employs a loss function somewhat similar to DreamerV1. Nevertheless, it incor-
porates a technique known as KL balancing, which is applied to the KL loss term. The KL
loss serves a dual role: it guides the prior towards the representations, while also imposing
regularization on the representations in the direction of the prior. However, it is desired to
prevent regularization towards an inadequately trained prior. DreamerV2 addresses this chal-
lenge by minimizing the KL loss more aggressively with respect to the prior compared to the
representations, accomplished through the use of distinct learning rates.

L = Oéﬁdyn + (1 — Oé)ﬁrep
Layn = KL(sg(p(StISt_1, a-1,0t))||a(selse-1, at_1)> (3)
ﬁrep = KL(p(3t|3t717 atflaot)}|SQ(Q(3t|3t717at71)))

Other changes have been implemented in DreamerV2, but the two mentioned above are the

most significant. Nevertheless, for a comprehensive overview of these alterations, please refer
to the appendix of the DreamerV2 paper [4].

4 DreamerV3

Similar to Dreamerl and Dreamer2, Dreamer3 [5] also utilizes an RSSM to learn a model of the
environment, which is further used by an actor-critic agent to learn a policy using imaginary
trajectories. DreamerV3 is an improved version of DreamerV2 with several enhancements, the
most important of which are described in the following subsections.

4.1 Symlog Predictions

To learn robustly across multiple domains, DreamerV3 learns a neural network that regresses
onto the symlog (symmetric log) function defined as follows:



Transformations

8 {— symlog
log

71— identity
0 B

—4 4

-8

A A S A s
= o

Figure 7: Image from [5], Training process of DreamerV3.

symlog(z) = sign(z) In(|z| + 1) (4)

As can be seen in Figure 6, the symlog function compresses the magnitudes of both large
positive and negative values, and unlike the logarithm, it is symmetric around the origin while
preserving the input sign. DreamerV3 uses symlog predictions in the decoder, the reward
predictor, and the critic, allowing this approach to robustly and quickly learn across a diverse
range of environments.

4.2 KL Regularizer

In DreamerV3, the world model parameters ¢ are optimized to minimize the following loss
function:

L= Bpred['pred + 5dyn£dyn + Brep['rep (5)

where Bpred = 1, Bayn = 0.5 and Brep = 0.1.

The prediction loss trains the decoder and reward predictor using the symlog loss. However, the
dynamic and representation losses have been slightly modified from DreamerV2. A maximum
term is added to the losses to prevent further learning when they are already minimized,
directing the world model’s focus towards its prediction loss.

L gyn = max (LKL [Sg(p(st|5t_1, at—l,Ot))HQ(5t|St—1a at—l)D

Lyep = max (1, KL [p(3t|5t—17at—17 0t)||SQ(Q(5t|3t—17at—1))})



Breakout MsPacman Breakout MsPacman

320 8000 290 10000
240 6000 240 7500
160 4000 160 5000
80 2000 80 2500 /""'—
0 % 0
1M 10M 100M 1B 1 10M 100M 1B 0 250M  500M 0 250M  500M
Crafter DMLab Goals Small Crafter DMLab Goals Small
16
5 200 16 200
1 150 12 150
8 100 8 100
4 50 a /_/_- o /_~f~_
100K 1M 10M 100M 1 10M 100M 1B 0 20M 40M 60M 0 150M 300M 450M
1 2 —4 —8 — 16 32 64 — XS § — M — L XL
(a) Training Ratio (b) Model Size

Figure 8: Image from [5], task performance over environment steps for different training ratios
and model sizes. The training ratio is the ratio of replayed steps to environment steps. It can
be seen that higher training ratios result in substantially improved data-efficiency, and larger
models achieve not only higher final performance but also higher data-efficiency.

4.3 Critic Learning

A simple choice for the critic loss function would be to regress the A-returns via squared
error or symlog predictions. However, the critic predicts the expected value of a potentially
widespread return distribution, which can slow down learning. DreamerV3 utilizes a discrete
regression approach for learning the critic based on twohot encoded targets. Twohot encoding
is a generalization of one-hot encoding where all the bins are zero except the two closest to
the input number. The sum of these bins should be zero, and more weight is given to the bin
which is closest to the input number.



References

1]

F.-M. Luo, T. Xu, H. Lai, X.-H. Chen, W. Zhang, and Y. Yu, “A survey on model-based
reinforcement learning,” arXiv preprint arXiv:2206.09328, 2022.

D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to control: Learning behaviors by
latent imagination,” arXiv preprint arXiv:1912.01603, 2019.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba, “Mastering atari with discrete world
models,” arXiv preprint arXiv:2010.02193, 2020.

D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap, “Mastering diverse domains through
world models,” arXiv preprint arXiv:2301.04104, 2023.



	Introduction
	DreamerV1
	Dynamics Learning
	Behavior Learning

	DreamerV2
	Categorical Variables
	KL Balancing

	DreamerV3
	Symlog Predictions
	KL Regularizer
	Critic Learning


