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Abstract
This literature review tries to offer a comprehensive overview of continual reinforcement
learning, encompassing an introduction to its core concepts and an overview of current ap-
proaches. The primary goal of this review is to analyze the existing literature and categorize
the findings to present a broader view, and finally, it aims to underscore the necessity of
integrating diverse studies in reinforcement learning in order to develop effective continual
learning agents.

1 Introduction
During the past decade, significant advancements in reinforcement learning have led to
achieving superhuman performance in various tasks. However, these approaches are typ-
ically specific to particular tasks, lack the capacity to generalize, and frequently demand
substantial volumes of data. They are often restricted their focus in some ways. For ex-
ample, it is often supposed that a complete description of the state of the environment is
available to the agent or that the interaction stream is subdivided into episodes [1]. This
stands in contrast to human learning, which is continual across their lifespan and has the ca-
pability to generalize across multiple tasks. This contrast has led to research efforts aimed at
bridging the gap between reinforcement learning agents and the ability to learn continually
in human learning, resulting in the development of continual reinforcement learning.
Learning approaches that try to generalize across multiple tasks, like multi-task learning and
meta-learning, often focus on generalizing those tasks by utilizing batches of data to train
an agent. This approach differs from the human learning process, which occurs sequentially
as new data is encountered without immediate access to extensive data batches (Figure 1).
Additionally, a continual learning agent should acquire behaviors or skills progressively and
further build upon those to develop more complex abilities hierarchically. It is also possible
for an agent to invent subtasks or make use of subgoals to reach milestones, which simplifies
its further learning. Moreover, a continual agent’s learning process should be task-agnostic
and enable the generalization to new tasks. Such agents must retain previously acquired
abilities and knowledge without catastrophic forgetting and also achieve a balance between
stability and plasticity.
However, few works explicitly consider continual reinforcement learning in its entirety, and
many of the advances in deep reinforcement learning are yet to be fully investigated in con-
tinual settings. Thus, it is crucial to explore the ideas and recent advances of reinforcement
learning for our pursuit to create continual reinforcement learning agents. This literature
review presents several recent articles, introducing their main ideas and their relation to
continual reinforcement learning.



It is also essential to contrast the continuing setting of reinforcement learning with contin-
ual learning. Continual learning emphasizes the ever-changing aspect of the world in which
the agent needs to adapt continually to the non-stationary dynamics. Non-stationarity is
orthogonal to the episodic or continuing nature of the agent-environment interaction. While
the continuing formulation can incorporate non-stationarity, the never-ending aspect of con-
tinuing tasks itself poses unsolved research questions even with the stationary dynamics. [10]

Figure 1: Difference between multi-task learning, meta-learning, and continual learning,
which is inspired from Stanford CS330 course.

2 Contributing Approaches
To gain a comprehensive understanding of the ideas and methods aimed at mitigating the
challenges of continual reinforcement learning, it is vital to consider recent advancements in
reinforcement learning. Therefore, this section categorizes recent methods and provides a
brief introduction to each, aiming to present their ideas.

Meta-learning
An essential requirement of continual RL is to acquire new capabilities in a sample efficient
manner. Meta-learning is a data-driven approach to improving an agent’s learning efficiency.
In this setting, an agent first performs meta-training about how to learn to generalize effi-
ciently on a distribution of tasks, and this meta-learning model is transferred to a new task
in order to adapt to it quickly. In other words, meta-learning provides an inductive bias for
the agent’s further training that improves sample efficiency in acquiring new behaviors. For
example, in MAML [3], the agent is first trained on multiple tasks to learn initial parameters,
which can further be used in another training phase for fast adaptation.
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Table 1: Covered methods and their scope.

Method Meta-learning Multi-task RL Model-based RL Offline RL Reset-free
ΨΦ-learning [2] 7 3 7 3 7

MTRF [4] 7 3 7 7 3

VaPRL [12] 7 7 7 7 3

ReLMM [14] 7 7 7 7 3

OptiDICE [7] 7 7 7 3 7

RECON [11] 7 7 7 3 7

LiSP [9] 7 7 3 3 3

HyperCRL [5] 7 7 3 7 7

COMBO [16] 7 7 3 3 7

MTSGI [13] 3 3 7 7 7

One approach that uses meta-learning is MTSGI [13], which proposes a method that can learn
a prior model of task structure from the training tasks and transfer it to the unseen tasks
for fast adaptation. It suggests that tasks often consist of multiple subtasks with complex
dependencies, which can be considered as subtask graphs. MTSGI infers the common task
structure in terms of the subtask graph from the training tasks and uses it as a prior to
improve the task inference in testing.

Multi-task RL
Multi-task learning is defined as an inductive transfer mechanism with the key objective to
improve generalization performance, which is vital in continual agents. The core objective
behind multi-tasking is to follow a learning-to-learn methodology to leverage the domain-
related information accumulated by training the individual, related tasks in parallel with
a shared representation of the system. In this way, the knowledge that is acquired during
each task learning can be utilized and thereby help other tasks be learned better. Multi-task
learning improves the overall generalization performance and can be applied across many
domains, including reinforcement learning [15].
An approach that utilizes multi-tasking is MTRF [4], aiming to learn manipulation tasks
without human interventions. The idea is that in a multi-task setting, some tasks can serve
as resets for other tasks, and learning multiple tasks simultaneously enables uninterrupted
continuous learning. It jointly learns K different policies πi for each task. The agent collects
a stream of data without any resets in the environment. Given the current state of the
environment, a task-graph G(s) : S → {0, 1, ..., K − 1} makes a decision once every T time
steps on which of the tasks should be executed and trained for the next T time steps. This
task-graph decides what order the tasks should be learned and which of the policies should
be used for data collection.
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Model-based RL and Planning
A continual learning agent must be able to effectively plan for the future by leveraging
its acquired knowledge. To this end, several approaches are proposed to learn a model of
the environment’s dynamic for further planning or mitigating other problems which can
be addressed using a model of the environment, such as out-of-distribution problem [16] or
reset-free learning [9].
HyperCRL [5] learns a dynamic model using task-conditioned hypernetworks. It consists of a
neural network that receives a task encoding as an input and outputs the weights of another
neural network, which is the dynamics function and is used in the planning phase. Another
approach, COMBO [16], combines offline RL with learning a model of the environment, which
can mitigate the out-of-distribution problem in offline methods by generalizing beyond the
offline data.
Moreover, humans acquire skills and build on them to solve increasingly complex tasks.
A continual learning agent must be able to reuse previously learned skills in new, unseen
situations (skill reusability). This is an important ability, especially when new skills can be
created on the fly in new situations. A continual RL agent should also have the ability to
compose its previous knowledge and skills to perform new ones (skill composition), which
enables the agent to exploit what was learned before with greater efficacy [6].
To this end, LiSP [9] learns a set of skills and argues that planning could be a unified solution
to a reset-free setting and has two main stages. First, a diverse set of low-level skills are
learned in an offline manner using intrinsic rewards, and this set of skills is used for further
planning by using model predictive coding (MPC). Whereas RL methods act in the environ-
ment according to a parameterized policy, model-based planning methods learn a dynamics
model p(st+1|st, at) to approximate the transition dynamics and use MPC to generate an
action via search over the model.

Offline RL
Offline reinforcement learning [8] is another area that, because of its capability of learning from
an offline dataset, has been adapted to continual reinforcement learning problems in which
massive online agent-environment interactions are expensive, dangerous, or impractical.
OptiDICE [7] is an offline RL algorithm that eliminates the need to evaluate out-of-distribution
actions. It estimates stationary distribution ratios that correct the difference between the
data distribution and the optimal policy’s stationary distribution. RECON [11] uses a visual
sensor to efficiently discover and reach a target image in a previously unseen environment.
It utilizes an offline dataset of previous experience transitions to learn a context-conditioned
latent goal model from a pair of context and goal images. This context-conditioned model
is trained to predict short-range temporal distances to go, as well as the best action towards
it.
Additionally, if artificial agents are to be effective in the real world, they will need to thrive in
environments populated by other agents. Humans can observe the behavior of other humans
and combine the obtained observation with their experiences to quickly learn how to achieve
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their own goals. This objective is also desirable in continual agents to learn from other agents
or even human demonstrations.
To this end, ΨΦ-learning [2] formalizes and addresses a problem setting in which an agent
has access to offline observations and actions drawn from the experiences of other agents
interacting with the same environment. However, it has no access to the rewards or goals
of these agents, and their objectives and levels of expertise may vary widely, which is also
common in real-world settings. To learn the shared features of the environment, ΨΦ-learning
utilizes the successor features framework to capture the environment’s dynamic, which is
further used to accelerate the reinforcement learning phase.

No Reset!
The objective of lifelong reinforcement learning is to optimize agents that can continuously
adapt and interact in changing environments. However, current RL approaches fail when
environments are non-stationary, and interactions are non-episodic. To address this problem,
some methods consider reset-free settings, in which resets to a fixed start distribution are
not viable.
VaPRL [12] formulates persistent reinforcement learning and suggests that learning how to
reach a goal g is easier from an initial state s close to it. Then, Knowing how to reach g
from s, also makes reaching g from neighbor states of s more straightforward, facilitating
incremental movement away from the goal. In other words, subgoals are defined to make
learning, especially in sparse reward settings, easier. A curriculum is created, which starts
from a state close to the goal and progressively moves towards the initial state distribution.
The curriculum C(g) results in the closest state to the initial state distribution such that
V π(s, g) ≥ ϵ. At the beginning of learning, the policy is insufficient, so C(g) selects the
states near the goal. As the policy improves, more states satisfy the V π(s, g) constraint, so
C(g) will select the states closer to the initial state distribution.
Another reset-free approach, ReLMM [14], disentangles learning grasping policy from naviga-
tion policy in a mobile manipulation task. It only uses successful grasp rewards for training
both policies and does not rely on complex sensory inputs but only a first-person image of
the area in front of the robot. In the first stage, the grasping policy is trained ensemble,
and after a successful grasp of a ball, the agent (robot) randomly puts it on the ground for
further training. At the next stage, the navigation and grasp policies are trained concur-
rently to learn how to navigate to a ball and then grasp it. After a successful grasp, again,
the agent moves to a random location and puts the ball on the ground for further train-
ing. The pseudo-reset behavior introduced in this approach minimizes the need for human
interventions.

3 Conclusion
This literature review presented recent approaches that address the issues associated with
continual reinforcement learning and introduced their ideas. In the future, the review will
expand its scope to cover a broader range of methods.
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